

1

The diagram shows two triangles.

Show that the triangles are similar.

: The triangles are similar.

2 A company makes two sizes of containers, small and large.

Each small container is similar to each large container.

The volume of each small container is 225 cm³ The volume of each large container is 650 cm³

Given that the height of each large container is 18 cm,

calculate the height, in cm to 3 significant figures, of each small container.

9x: height of small container

$$(\frac{x}{18})^3 = \frac{225}{650}$$
 $\frac{225}{5832}$
 $\frac{225}{650}$
 $\frac{225}{650}$
 $\frac{26244}{13}$
 $\frac{26244}{13}$
 $\frac{26244}{13}$
 $\frac{26244}{13}$

3 A and B are two similar solids.

The volume of **A** is 500 cm³ The volume of **B** is 32 cm³

The total surface area of A is 250 cm²

Calculate the total surface area, in cm2, of B.

$$\left(\frac{x}{250}\right)^{3} = \left(\frac{32}{500}\right)^{2}$$

$$\frac{x^{3}}{15625000} = \frac{1024}{250000}$$

$$\frac{x^{3}}{15625000} = \frac{64000}{250000}$$

$$\frac{x^{3}}{1564000} = \frac{64000}{4000}$$

The diagram shows the square ACEF and the equilateral triangles ABC and CDE

Prove that $\triangle ECB$ is congruent to $\triangle ACD$